LETTERS TO THE EDITOR

Reactions of Trimethylsilyl Phosphites with Anhydrides of Phthalic and 2-Sulfobenzoic Acids

A. A. Prishchenko, M. V. Livantsov, O. P. Novikova, L. I. Livantsova, and V. S. Petrosyan

Lomonosov Moscow State University, Vorob'yovy Gory, Moscow, 119991 Russia e-mail: aprishchenko@yandex.ru

Received June 28, 2012

DOI: 10.1134/S1070363212110278

Anhydrides of phthalic and 2-sulfobenzoic acids readily react with various nucleophiles and are widely used in the organic and organometallic synthesis [1]. Previously, we have developed a number of convenient methods for the synthesis of the functionalized phosphorus amides of iso- and terephthalic acids [2]. In this work we studied the reactions of trimethylsilyl phosphites with phthalic and 2-sulfobenzoic anhydrides and showed that different results of these

reactions were determined by different reactive precursors. Thus, an excess of tris(trimethylsilyl) phosphite reacts slowly with phthalic anhydride in methylene chloride in the presence of bis (trimethylsilyl) phosphite and trimethylchlorosilane already at 20°C. The reaction proceeds via an intermediate formation of phosphonate I detected by the NMR, and results in diphosphonate II in high yield (cf. [3]).

Under similar conditions, the nucleophilic reaction of diethyl trimethylsilyl phosphite and diethyl phosphite with phthalic anhydride proceeds exothermally and results in the product of a phosphonatephosphate rearrangement III in a high yield. On distilling compound III, a formation of some phosphonate IV and diethyl trimethylsilyl phosphate was registered by the NMR (cf. [4]).

Under these conditions, 2-sulfobenzoic anhydride reacts with trimethylsilylphosphites to give only the phosphonate-phosphates **V** and **VII**, which

are transformed into phosphonates **VI**, **VIII** and the corresponding trimethylsilyl phosphates at distillation.

The reaction of diphosphonate II and phosphonate VI with an excess of methanol results in mono- and

diphosphonic acids IX, X, which are white hygroscopic crystals.

The resulting compounds II, III, VI, VIII-X containing phosphonate groups along with the cyclic moieties are of interest as potential ligands and biologically active substances. The NMR spectra of compounds I-X contain the characteristic signals of the A-C fragments whose parameters are listed below.

Tetra(trimethylsilyl) (3-oxo-1,3-dihydro-2-benzo-furan-1,1-diyl)bisphosphonate (II). A mixture of 16.4 g of tris(trimethylsilyl) phosphite, 5.7 g of bis(trimethylsilyl) phosphite, 3.7 g of phthalic anhydride, and 2 ml of trimethylchlorosilane in 15 ml of methylene chloride was stirred for 1 h. Then the solvent was distilled off. In the NMR spectrum of the mixture the signals of the phosphonate **I** were observed. ¹H NMR spectrum, δ, ppm: 7.25–7.50 m (C₆H₄), –0.05 s (Me₃SiOC), –0.31 s and –0.38 s (2Me₃SiOP). ¹³C NMR spectrum, δ_C, ppm: 101.86 d (C¹, ¹ J_{PC} 227.5 Hz 126.32 (C²), 145.98 d (C³, ³ J_{PC} 9.5 Hz), 133.66 (C⁴), 124.26 and 124.29 (C⁵, C⁶), 130.35 (C⁷), 166.60 (C⁸), 0.85 (Me₃SiOC), 0.54 and 0.14 (2Me₃SiOP). ³¹P NMR spectrum: δ_P –6.45 ppm.

Then to the reaction mixture was added 2 ml of trimethylchlorosilane. The mixture was kept at 20°C

for two weeks and then distilled to obtain 12.7 g of bisphosphonate **II**. Yield 87% yield, bp 172°C (1 mm Hg), mp 52°C. ¹H NMR spectrum, δ, ppm: 7.25–7.55 m (C_6H_4), -0.23 s and -0.09 s ($2Me_3Si$). ¹³C NMR spectrum, δ_C,ppm: 83.14 t (C^1 , $^1J_{PC}$ 162.5 Hz), 124.8–125.3 (C^2 , C^5 , C^6), 145.20 t (C^3 , $^3J_{PC}$ 5.6 Hz), 133.63 (C^4), 129.40 (C^7), 169.04 (C^8), -0.23 and -0.09 ($2Me_3Si$). ³¹P NMR spectrum: δ_P –8.91 ppm. Found, %: C 41.03; H 6.84. $C_{20}H_{40}O_8P_2Si_4$. Calculated, %: C 41.22; H 6.92.

Trimethylsilyl 2-{(diethoxyphosphoryl)|(diethoxyphosphoryl)oxy|methyl|benzoate (III). To a mixture of 3.7 g of phthalic anhydride and 15 ml of methylene chloride was added a solution of 12 g of diethyl trimethylsilyl phosphite and 3.8 g of diethyl phosphite in 20 ml of methylene chloride. After the completion of the exothermic reaction the solvent was distilled off, and the residue was distilled. Yield 11 g (89%), bp 187°C (1 mm Hg). ¹H NMR spectrum, δ, ppm: 6.79 d.d ($C^{1}H$, ${}^{2}J_{PH}$ 14.8, ${}^{3}J_{PH}$ 10.8 Hz), 6.9–7.6 m ($C_{6}H_{4}$), 3.4–3.7 m (4CH₂OP), 0.7–0.9 m (4CH₃), -0.04 s (Me₃Si). ¹³C NMR spectrum, δ_C , ppm: 69.70 d.d (C¹, $^{1}J_{PC}$ 166.9, $^{2}J_{PC}$ 5.6 Hz), 129.41 d (C², $^{2}J_{PC}$ 5.6 Hz), 135.61 (C^3), 131.72 (C^4), 127.81 and 127.97 (C^5 , C^6), 130.80 (C^7), 166.11 (C^8), 62.5–63.7 m (4CH₂OP), 15.5-16.1 m (4Me), -0.74 (Me₃Si). ³¹P NMR spectrum, δ_P , ppm: 16.45 d (P^1 , ${}^3J_{PP}$ 33.4 Hz), -1.49 d (P^2 , ${}^3J_{PP}$ 33.4 Hz). Found, %: C 45.82; H 6.78. C₁₉H₃₄O₉P₂Si. Calculated, %: C 45.96; H 6.90.

The fraction boiling at 110–130°C (1 mm Hg) contains phosphonate **IV** [$\delta_{\rm H}$ 5.44 ppm (d, C¹H, ² $J_{\rm PH}$ 8.3 Hz); $\delta_{\rm C}$ 75.10 ppm (d, C¹, ¹ $J_{\rm PC}$ 163.4 Hz); $\delta_{\rm P}$ 13.48 ppm] and diethyl trimethylsilyl phosphate ($\delta_{\rm P}$ –9.32 ppm).

The phosphonates VI and VIII were obtained similarly.

Bis(trimethylsilyl) (1,1-dioxido-3*H*-2,1-benzoxathiol-3-yl)phosphonate (VI). Yield 52%, bp 142°C (1 mm Hg). 1 H NMR spectrum, δ, ppm: 5.53 d (1 H, 2 J_{PH} 8.2 Hz), 7.3–7.5 m (2 G₀H₄), -0.01 br.s (Me₃Si). 13 C NMR spectrum, δ_C, ppm: 77.85 d (1 J_{PC} 171.2 Hz), 130.91 d (2 C₁J_{PC} 5.3 Hz), 135.61 d (2 C₁J_{PC} 4 Hz), 133.56 (4 C₁, 127.30 and 125.04 (5 C₁C₁, 130.34 (7 C₁), 0.23 (Me₃Si). 31 P NMR spectrum: δ_P –6.80 ppm. Found, %: C 39.43; H 5.72. 2 C₁₃H₂₃O₆PSSi₂. Calculated, %: C 39.58; 5.88.

The fraction boiling at 90–110°C (1 mm Hg) contains tris(trimethylsilyl) phosphate (δ_P –26.01 ppm). Before the distillation the reaction mixture contained compound **V** [δ 6.15 ppm (d.d, C¹H, ² J_{PH} 14.8, ³ J_{PH} 10 Hz); δ_C 69.90 ppm (d.d, C¹, ¹ J_{PC} 179.5, ³ J_{PC} 6.6 Hz); δ_P –1.76 ppm (d, P¹, ³ J_{PP} 41.6 Hz) and –19.66 ppm (d, P², ³ J_{PP} 41.6 Hz)].

Diethyl (1,1-dioxido-3*H*-2,1-benzoxathiol-3-yl)-phosphonate (VIII). Yield 47%, bp 133°C (1 mm Hg). ¹H NMR spectrum, δ, ppm: 5.79 d (1 H, 2 J_{PH} 8.1 Hz), 7.4–7.9 m (2 GH₄), 3.7–3.9 m (2CH₂O), 1.1–1.3 m (2CH₃). ¹³C NMR spectrum, δ_C, ppm: 77.15 d (1 J_{PC} 165.3 Hz), 130.78 d (2 C, 2 J_{PC} 5.2 Hz), 132.30 d (3 C, 3 J_{PC} 4.3 Hz), 133.95 (4 C), 121.63 and 124.79 (5 C, 6 C), 130.57 (7 C), 64.61 d and 64.30 d (2CH₂OP, 2 J_{PC} 7 Hz), 15.92 d (CH₃, 3 J_{PC} 5.9 Hz). ³¹P NMR spectrum: δ_P 11.11 ppm. Found, %: C 42.94; H 4.87. C₁₁H₁₅O₆PS. Calculated, %: C 43.14; 4.94.

The fraction boiling at 80–100°C (1 mm Hg) contains diethyl trimethylsilyl phosphate (δ_P –9.46 ppm). Before the distillation of the reaction mixture it contains compound **VII** [δ_H 6.41 ppm (d.d, C¹H, ² J_{PH} 12, ³ J_{PH} 11.2 Hz); δ_C 69.20 ppm (d.d, C¹, ¹ J_{PC} 167.9, ³ J_{PC} 5.4 Hz); δ_P 15.73 ppm (d, P¹, ³ J_{PP} 29.8 Hz) and –2.42 ppm (d, P², ³ J_{PP} 29.8 Hz)].

(3-Oxo-1,3-dihydro-2-benzofuran-1,1-diyl)diphosphonic acid (IX). A mixture of 12.7 g of diphos-

phonate **II** and 50 ml of methanol was heated to boiling. The solvent was distilled off, and the residue was kept in a vacuum at 1 mm Hg for 1 h. Yield 97% (6.2 g), mp > 250°C. 1 H NMR spectrum, δ, ppm: 7.60–8.05 m (C₆H₄). 13 C NMR spectrum, δ_C, ppm: 84.25 t (C¹, $^{1}J_{PC}$ 149.3 Hz), 125.15 t (C², $^{2}J_{PC}$ 3.9 Hz), 145.71 (C³), 134.07 (C⁴), 124.78 and 125.03 (C⁵, C⁶), 129.41 (C⁷), 170.83 (C⁸). 31 P NMR spectrum: δ_P 9.17 ppm. Found, %: C 32.42; H 2.92. C₈H₈O₈P₂. Calculated, %: C 32.67; H 2.74.

(1,1-Dioxido-3*H*-2,1-benzoxathiol-3-yl)phosphonic acid (X). Yield 96%, mp 70°C. 1 H NMR spectrum, δ, ppm: 6.07 d (1 H, 2 J_{PH} 8 Hz), 7.6–7.9 m (2 G-13 Hz), 130.73 d (2 C, ppm: 78.90 d (2 C, 1 J_{PC} 162 Hz), 130.73 d (2 C, 2 J_{PC} 4.2 Hz), 133.69 d (3 C, 3 J_{PC} 4 Hz), 134.06 (4 C, 121.44 and 124.71 (5 C, 6 C, 130.47 (7 C). 31 P NMR spectrum: 3 P 9.81 ppm. Found, %: C 33.37; H 2.74. 2 C-14 C₂PS. Calculated, %: C 33.61; H 2.82.

The NMR spectra were obtained on a Bruker Avance 400 spectrometer relative to TMS (¹H, ¹³C) or 85% H₃PO₄ in D₂O (³¹P) using CDCl₃ (**I–VIII**) and CD₃OD (**IX**, **X**) as the solvents.

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research (grants nos. 11-03-00402 and 12-03-00003).

REFERENCES

- Kehler, J. and Breuer, E., Synthesis, 1998, no. 10, p. 1419; Love, B. and Kormendy, M., J. Org. Chem., 1962, vol. 27, p. 1703; Trinkhaus, S., Holz, J., Selke, R., and Boerner, A., Tetrahedron Lett., 1997, vol. 37, p. 807.
- 2. Prishchenko, A.A., Livantsov, M.V., Novikova, O.P., Livantsova, L.I., and Milaeva, E.R., *Zh. Obshch. Khim.*, 2010, vol. 80, no. 1, p. 160.
- 3. Griffiths, D.V. and Duncanson, P., *Phosphorus, Sulfur, Silicon, Rel. Elem.*, 2002, vol. 177, p. 2213; Guenin, E., Dedache, E., Liquier, J., Lequier, J., and Lecouvey, M., *Eur. J. Org. Chem.*, 2004, no. 14, p. 2983.
- 4. Lecouvey, M., Mallard, I., Bailly, T., Burgada, R., and Leroux, Y., *Tetrahedron Lett.*, 2001, vol. 42, p. 8475; Zemlyanoi, V.N., Kukhar', V.P., and Kolodyazhnyi, O.I., *Zh. Obshch. Khim.*, 2010, vol. 80, no. 8, p. 1399.